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Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with
the electric-field effect to an unprecedented range of transition temperatures. Here we perform a detailed
finite-size scaling analysis to explore the compatibility of the phase-transition line with Berezinskii-Kosterlitz-
Thouless �BKT� behavior and a two-dimensional–quantum-phase �2D-QP� transition. In an intermediate re-
gime, limited by a gate voltage dependent limiting length, we uncover remarkable consistency with a BKT-
critical line ending at a metallic quantum critical point, separating a weakly localized insulator from the
superconducting phase. Our estimates for the critical exponents of the 2D-QP-transition, z�1 and �̄�2 /3,
suggest that it belongs to the three-dimensional-xy universality class.
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I. INTRODUCTION

At the interface between oxides, electronic properties
have been generated, different from those of the constituent
materials.1–3 In particular, the interface between LaAlO3 and
SrTiO3, two excellent band insulators, found to be conduct-
ing in 2004 �Ref. 1� attracted a lot of attention.4–9 Recently,
different ground states, superconducting and ferromagnetic,
have been reported for this fascinating system.2 In a recent
report,10 it was shown that the electric-field effect can be
used to map the phase diagram of this interface system re-
vealing, depending on the doping level, a superconducting
and nonsuperconducting ground state and evidence for a
quantum-phase transition.

Continuous quantum-phase transitions are transitions at
absolute zero in which the ground state of a system is
changed by varying a parameter of the Hamiltonian.11–13 The
transitions between superconducting and insulating behavior
in two-dimensional systems tuned by disorder, film thick-
ness, magnetic field or with the electrostatic field effect are
believed to be such transitions.12–19

Here we present a detailed finite-size scaling analysis of
the temperature and gate voltage dependent resistivity data
of Caviglia et al.10 to explore in the LaAlO3 /SrTiO3 system
the nature of the phase-transition line and of its end point,
separating the superconducting from the insulating ground
state. For this purpose we explore the compatibility of the
normal state to superconductor transition with Berezinskii-
Kosterlitz-Thouless �BKT� critical behavior.20,21 Our analy-
sis of the temperature dependence of the sheet resistance at
various fixed gate voltages uncovers a rounded BKT transi-
tion. The rounding turns out to be fully consistent with a
standard finite-size effect whereupon the correlation length is
prevented to grow beyond a limiting length L. Indeed, a fi-
nite extent of the homogeneous domains will prevent the
correlation or localization length to grow beyond a limiting
length L and, as a result, a finite-size effect occurs. Because
the correlation length does not exhibit the usual and rela-
tively slow algebraic divergence as Tc is approached, the
BKT-transition is particularly susceptible to such finite-size

effects. Nevertheless, for sufficiently large L the critical re-
gime can be attained and a finite-size scaling analysis pro-
vides good approximations for the limit of fundamental in-
terest, L→�.12,22,23

As will be shown below, our finite-size scaling analysis
uncovers close to the QP transition a gate voltage dependent
limiting length. According to this electrostatic tuning does
not change the carrier density only but the inhomogeneity
landscape as well. The finite-size scaling analysis also allows
us to determine the gate voltage dependence of the BKT-
transition temperature Tc, of the associated fictitious infinite
system. This critical line, Tc versus gate voltage, ends at a
quantum critical point at the gate voltage Vgc. Here the sheet
conductivity tends to ���T=0,Vgc��2.52�10−4��−1�
which is comparable to the quantum unit of conductivity
4e2 /h�1.55�10−4��−1� for electron pairs, emphasizing the
importance of quantum effects. Its limiting T2 temperature
dependence points to Fermi-liquid behavior at quantum criti-
cality. The estimates for the critical exponents of the two-
dimensional–quantum-phase �2D-QP� transition, z�1 and
�̄�2 /3, suggest that it belongs to the three-dimensional
�3D�-xy universality class. In the normal state we observe
non-Drude behavior, consistent with the evidence for weak
localization. To identify the nature of the insulating phase
from the temperature dependence of the resistance, we per-
form a finite-size scaling analysis, revealing that the growth
of the diverging length associated with weak localization is
limited and gate voltage dependent as well. Nevertheless, we
observe in both, the temperature and magnetic-field depen-
dence of the resistance, the characteristic weak localization
behavior, pointing to a renormalized Fermi liquid. In addi-
tion we explore the Tc dependence of the vortex core radius
and the vortex energy. These properties appear to be basic
ingredients to understand the variation of Tc. In the super-
conducting phase we observe consistency with the standard
quantum scaling form for the resistance, while in the weakly
localized phase it appears to fail. In contrast to the quantum
scaling approach we obtain the scaling function in the super-
conducting phase explicitly. It is controlled by the BKT-
phase transition line and the vortex energy.
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In Sec. II we sketch the theoretical background and
present the detailed analysis of the resistivity data of
Caviglia et al.10 We close with a brief summary and some
discussion.

II. THEORETICAL BACKGROUND AND DATA ANALYSIS

A. BKT transition

To explore the compatibility with BKT critical behavior
we invoke the characteristic temperature dependence of the
correlation length above Tc,

21

��T� = �0 exp�2�/�bt1/2��, t = �T/Tc − 1� , �1�

where �0 is the classical vortex core radius and b is related to
the energy needed to create a vortex.24–27 Note that b also
enters the temperature dependence of the magnetic penetra-
tion depth 	 below the universal Nelson-Kosterlitz jump,24

	2�Tc�/	2�T� = �1 + b�t�1/2/4� . �2�

Moreover, b is related to the vortex energy Ec in terms of26,28

b = f�Ec/�kBTc�� . �3�

Invoking dynamic scaling the resistance R scales in D=2
as12

R 
 �−zcl, �4�

where zcl is the dynamic critical exponent of the classical
dynamics. zcl is usually not questioned to be anything but the
value that describes simple diffusion: zcl=2.29 Combining
these scaling forms we obtain

R�T�
R0

= � �0

��T��2

= exp�− bR�T − Tc�−1/2� , �5�

with

bR = 4�Tc
1/2/b, R0 
 1/�0

2. �6�

Accordingly the compatibility of experimental resistivity
data with the characteristic BKT behavior can be explored in
terms of

�d ln R/dT�−2/3 = �2/bR�2/3�T − Tc� . �7�

Because the correlation length does not exhibit the usual and
relatively slow algebraic divergence as Tc is approached �Eq.
�1�� the BKT transition is particularly susceptible to the
finite-size effect. It prevents the correlation length to grow
beyond a limiting lateral length L and leads to a rounded
BKT transition. Nevertheless, for sufficiently large L the
critical regime can be attained and a finite-size scaling analy-
sis allows good approximations to be obtained for the limit
L→� �Refs. 12 and 22� including estimates for Tc, bR, R0,
and their gate voltage dependence. In the present case poten-
tial candidates for a limiting length include the finite extent
of the homogenous regions and the failure to cool the elec-
tron gas down to the lowest temperatures. In the latter case L
is given by the value of the correlation length at the tempera-
ture where the failure of cooling sets in. In any case finite-
size scaling predicts that R�T ,L� adopts the form

R�T,L�
R�T,��

= 	 ��T,0�
��T,��


2

= g�x� =
R�T,L�

R0
exp�bR�T − Tc�−1/2� ,

�8�

where

x =
exp�bR�T − Tc�−1/2�

R0L2 
 	 ��T,��
L


2

. �9�

g�x� is the finite-size scaling function. If ��T ,���L critical
behavior can be observed as long as g�x��1, while for
��T ,���L the scaling function approaches g�x�
x so
R�T�exp�bR�T−Tc�−1/2� /R0 tends to �g /R0�exp�bR�T−Tc�−1/2�
with g�1 /L2.

We are now prepared to explore the evidence for BKT
behavior. In Fig. 1 we show �d ln R /dT�−2/3 vs T for Vg
=40 V. In spite of the rounded transition there is an inter-
mediate regime revealing the characteristic BKT behavior
�Eq. �7��, allowing us to estimate R0, bR, and Tc. As can be
seen in the inset of Fig. 1, depicting R�T�exp�bR�T
−Tc�−1/2� /R0 vs �1 /R0�exp�bR�T−Tc�−1/2�, the rounding of the
transition is remarkably consistent with a standard finite-size
effect. The horizontal line corresponds to ��L where critical
behavior can be observed as long as g�x��1, while the
dashed one characterizes the rounded regime where ��L.
Here the scaling function approaches g�x�
x and R�T ,L�
tends to g
L−2. Independent evidence for BKT behavior was
also established in earlier work in terms of the current-
voltage characteristics.2

Applying this approach to the R�T� data for each gate
voltage Vg we obtain good approximations for the values of
Tc�Vg�, bR�Vg�, and R0�Vg�, in the absence of a finite-size
effect. The resulting BKT-transition line is depicted in Fig. 2,
displayed as Tc vs R��T��, the normal-state resistance at
T�=0.4 K. We observe that it ends around R�c�T��

FIG. 1. �Color online� �d ln R /dT�−2/3 vs T for Vg=40 V where
R=3 /5R�. The solid line is �d ln R /dT�−2/3=6.5�T−Tc� yielding
the estimates Tc=0.27 K and �2 /bR�2/3=6.5; the inset shows
R�T�exp�bR�T−Tc�−1/2� /R0 vs �1 /R0�exp�bR�T−Tc�−1/2� with R0

=1.67 k�. The upper branch corresponds to T�Tc and the lower
one to T�Tc. The solid line is R�T ,L��R�T ,�� and the dashed one
R exp�bR�T−Tc�−1/2� /R0= �g /R0�exp�bR�T−Tc�−1/2� with g�501

1 /L2.
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�4.28 k� where the system is expected to undergo a 2D-
QP-transition because Tc vanishes. With reduced R� the tran-
sition temperature increases and reaches its maximum value,
Tcm�0.31 K, around R��T���1.35 k�. With further re-
duced resistance Tc decreases. We also included the gate
voltage dependence of the normal-state resistance since cor-
rections to Drude behavior ��
n� have been discussed in the
literature for systems exhibiting weak localization as will be
demonstrated below.30,31

According to the scaling theory of quantum critical phe-
nomena one expects that close to the 2D-QP-transition Tc
scales as12,32

Tc 
 
z�̄, �10�

where 
 is the appropriate scaling argument, measuring the
relative distance from criticality. �̄ denotes the critical expo-
nent of the zero-temperature correlation length ��T=0�


−�̄ and z the dynamic critical exponent. From Fig. 2 it is
seen that the experimental data points to the relationship,

Tc 
 �R��T�� 
 �Vg
2/3, �11�

close to quantum criticality, where �R��T��=R�c�T��
−R��T��. In this context it is important to emphasize that
Tc
�R��T�� turns out to be nearly independent of the
choice of T� around T��0.4 K. So the normal-state sheet
resistance R��T�� is an appropriate scaling variable in terms
of �R��T��. In this case z�̄=1, while if 
=�Vg, z�̄=2 /3.
Since the measured modulation of the gate voltage induced
charge density �n2D scales in the regime of interest as10

�Vg 
 �n2D 
 Tc
3/2, �12�

so z�̄=2 /3 if �Vg or �n2D are taken as scaling argument 
.
On the other hand it is known that 

�n2D holds if
�2+z��̄�2.33 To check this inequality, given z�̄, we need an
estimate of z. For this purpose we invoke the relation R0
−R0c
�0

−2 �Eq. �6�� and note that the critical amplitude of the
finite-temperature correlation length �0 and its zero-
temperature counterpart should scale as �0
��T=0�

−�̄, so
that the scaling relation,

R0 − R0c 
 �0
−2 
 �−2�T = 0� 
 
2�̄ 
 Tc

2/z, �13�

holds. Figure 3 depicts the Tc dependence of the vortex core
radius �0
��T=0�
 �R0c−R0�−1/2 and b, which is related to
the vortex energy Ec. Approaching the 2D-QP-transition we
observe that the data point to ��T=0�
1 /Tc, yielding for z
the estimate z�1 so that �̄�2 /3 with z�̄�2 /3. As these
exponents satisfy the inequality �2+z��̄�2 �Ref. 33� we
identified the correct scaling argument, 

�n2D
�Vg. The
2D-QP transition is then characterized by the scaling rela-
tions,

Tc 
 
z�̄ 
 �R��T�� 
 �Vg
2/3 
 �n2D

2/3 
 �0
−1, �14�

where �R��T��
�n2D
2/3 reveals non-Drude behavior in the

normal state. The product z�̄�2 /3 agrees with that found in
the electric-field effect tuned 2D-QP-transition in amorphous
ultrathin bismuth films16 and the magnetic-field-induced
2D-QP transition in Nb0.15Si0.85 films.17 On the contrary it
differs from the value z�̄�1 that has been found in thin
NdBa2Cu3O7 films using the electric-field-effect modulation
of the transition temperature.19 In any case our estimates,
z�1 and �̄�2 /3 point to a 2D-QP transition which belongs
to the 3D-xy universality class.12

Figure 3 also depicts the Tc dependence of b, which is
related to the vortex energy. Since b tends to a constant in the
limit Tc→0, Eq. �2� implies db /dTc=0 and therewith

Ec�Tc� 
 kBTc, �15�

while the core radius diverges as

�0 
 1/Tc, �16�

in analogy to the behavior of superfluid 4He films where Tc
was tuned by varying the film thickness.34 A linear relation-
ship between the vortex core energy and Tc was also pre-
dicted for heavily underdoped cuprate superconductors.35

Furthermore, an increase in the vortex core radius with re-
duced Tc was also observed in underdoped YBa2Cu3Oy �Ref.
36� and La2−xSrxCuO4.37 The 2D-QP transition is then also
characterized by vortices having an infinite radius and van-
ishing core energy. As Tc increases from the 2D-QP transi-

FIG. 2. �Color online� Tc vs R��T�� ��� and Vg vs R��T�� ��� at
T�=0.4 K. The error bars indicate the uncertainty in the finite-size
estimates of Tc. The solid line is Tc=1.17�10−4�R�T�� and the
dashed one Vg=Vgc+1.39�10−3�R3/2�T�� with �R�T��= �R�c�T��
−R��T���, R�c�T��=4.28 k� and Vgc=−140 V.

FIG. 3. �Color online� Vortex radius �0
 �R0c−R0�−1/2 ��� and b
��� vs Tc where R=3 /5R�. The solid line is �0
 �R0c−R0�−1/2=8
�10−3 /Tc with R0c=2.7 k�.
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tion, the core radius shrinks, while the vortex energy in-
creases. We also observe that the rise of Tc is limited by a
critical value of the core radius and that the maximum
Tc�Tcm�0.31 K� is distinguished by an infinite slope of
both, the vortex radius and b. Finally, after passing Tcm the
vortex core radius �0 continues to decrease with reduced Tc
while b increases further.

Next we explore the gate voltage dependence of the lim-
iting length. Indeed, its presence or absence allows us to
discriminate between an intrinsic or extrinsic limiting length.
For this purpose we performed the finite scaling analysis
outlined in Fig. 1 for various gate voltages. In the finite-size
dominated regime, ��L, the finite-size scaling form
�Eq. �8�� reduces to R�T�exp�bR�T−Tc�−1/2� /R0=g�x�

 �g /R0�exp�bR�T−Tc�−1/2� with g
1 /L2, so g probes, if
there is any, the gate voltage dependence of L. In Fig. 4 we
summarized the resulting gate voltage dependence of
L
g−1/2. It is seen that the limiting length is nearly gate
voltage independent down to Vg=0 V. This points to the
presence of inhomogeneities preventing the correlation
length to grow beyond the lateral extent of the homogeneous
domains. On the contrary, for negative gate voltages L de-
creases by approaching the QP transition as Tc does. The
resulting broadening of the BKT-transition with reduced Vg
and Tc is apparent in the temperature dependence of the sheet
resistance.10 A potential candidate for a gate voltage depen-
dent limiting length is the failure of cooling at very low
temperatures.18 In this case the correlation length cannot
grow beyond its value at the temperature Tf where the failure
of cooling sets in. Invoking Eq. �1� in the limit Tc→0 we
obtain Lf =�0 exp�2� / �bTf

1/2��
1 /Tc, because �0
1 /Tc and
b remains finite in the limit Tc→0 �see Fig. 3�. Contrariwise
we observe in Fig. 4 that L decreases with Tc. According to
this electrostatic tuning does not change the carrier density
only but the inhomogeneity landscape as well.

In any case, the agreement with BKT behavior, limited by
a standard finite-size effect, allows us to discriminate the
rounded transition from other scenarios, including strong dis-
order which destroys the BKT behavior. It also provides the

basis to estimate Tc, bR, and R0, and with that b and �0

R0

−1/2 with reasonable accuracy. The resulting BKT-
transition line ends at Vgc�−140 V, where Tc vanishes and
the system undergoes a 2D-QP transition. After passing this
transition Tc increases with reduced negative gate voltage,
reaches its maximum, Tcm�0.31 K, around Vg�110 V and
decreases with further increase in the positive gate voltage.
Remarkably enough, this uncovers a close analogy to the
doping dependence of Tc in a variety of bulk cuprate
superconductors,12,38 where after passing the so-called under-
doped limit Tc reaches its maximum with increasing dopant
concentration. With further increase in the dopant concentra-
tion Tc decreases and finally vanishes in the overdoped limit.
This phase-transition line is thought to be a generic property
of bulk cuprate superconductors. There is, however, an es-
sential difference. Cuprates are bulk superconductors and the
approach to the underdoped limit, where the QP transition
occurs, is associated with a 3D to 2D crossover,12,38 while in
the present case the system is and remains 2D, as the con-
sistency with BKT critical behavior reveals. Furthermore, a
superconducting dome �in the T versus doping phase dia-
gram� was also observed in bulk doped SrTiO3 that is close
to the system under study.39,40

B. INSULATING PHASE

Supposing that the insulating phase is a weakly localized
Fermi liquid the sheet conductivity should scale as41

���T� = ��0 + d ln�T� , �17�

where d=e2 / ��h��1.23�10−5 �−1 is generically attributed
to electron-electron interaction,42 while ��0 is expected to
depend on the gate voltage. In Fig. 5�a� we depicted ��

−��0 vs T for various gate voltages Vg by adjusting ��0 to
achieve a data collapse at sufficiently high temperatures. The
resulting gate voltage dependence of ��0, consistent with

��0�Vg� = ��s − 5.9 � 10−6�Vg − Vgc�2/3��−1� ,

��s = 2.52 � 10−4��−1� , �18�

is shown in Fig. 5�b�. An important feature of the data is the
consistency with a weakly localized Fermi liquid because the
coefficient d is close to d=e2 / ��h�. In any case, more ex-
tended evidence for weak localization emerges from the
magnetoconductivity presented below �Fig. 9�.

A very distinct temperature dependence of the conductiv-
ity occurs at quantum criticality, Vg=−140 V�Vgc. Indeed,
the dashed line in Fig. 5�a� and the solid one in Fig. 6 indi-
cate that in the limit T→0 the system tends toward a critical
value. According to the plots shown in Fig. 6 the limiting
behavior is well described by

���T,Vgc� = ��s�Vgc� − 9.782 � 10−4 T2. �19�

Note that our estimate ���T=0,Vgc�=��0�Vgc�=��s=2.52
�10−4 �−1 is comparable to the quantum unit of conductiv-
ity 4e2 /h�1.55�10−4 �−1 for electron pairs, emphasizing
the importance of quantum effects. The T2 dependence points
to Fermi-liquid behavior in the regime kBT���D, EF where
electron-electron scattering dominates. �D is the Debye fre-

FIG. 4. �Color online� Gate voltage dependence of the limiting
length L in terms of L
g−1/2 vs. Vg. The inset shows Tc vs Vg. The
solid line is Tc=8.9�10−3�Vg−Vgc�2/3�K� indicating the leading
quantum critical behavior �Eq. �14�� with z�̄�2 /3.
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quency and EF denotes the Fermi energy. At higher tempera-
ture we observe a crossover to a linear T-dependent conduc-
tivity marked by the dash-dot line. Recent theories on the
conductivity of 2D Fermi liquids predict such a linear T
dependence.43 From Eqs. �17� and �18�, describing the data
in the weakly localized regime rather well, it also follows
that the normal-state conductivity at T�=0.4 K scales as
��c�T��−���T��
10−6�Vg−Vgc�2/3. Together with the em-
pirical scaling relation �Eq. �14��, �Vg−Vgc�
�n2D, it points
to non-Drude behavior in the normal state.

Considering the temperature dependence of the sheet con-
ductivity below quantum criticality �Vg=−140 V�Vgc�, Fig.
5�a� reveals at sufficiently high-temperature remarkable
agreement with the ln�T� behavior, characteristic for weak
localization. On the contrary, in the low-temperature regime
and even rather deep in the insulating phase �Vg=−300 V�,
systematic deviations occur in terms of saturation and an
upturn as quantum criticality is approached �Vgc=−140 V�.
Because the conductivity of a weakly localized insulator is

not expected to saturate in the zero-temperature limit44,45 this
behavior appears to be a finite-size effect, preventing the
diverging length associated with localization,41 �loc

d�ln�T��, to grow beyond L, the limiting length already
identified in the context of the rounded BKT transition �Fig.
4�. In the present case finite-size scaling predicts that ���T�
should scale as

���T� − ��c

d ln�T�
= g�y�, y = L/�loc 
 L/�d�ln�T��� . �20�

g�y� is the finite-size scaling function which tends to 1 for
y�1. In this case the approach to the insulating ground state
can be seen, while for y�1 the crossover to g�y�→y sets in
and ���T� approaches the finite-size dominated regime,
where

���T� − ��c

d ln�T�
= gL/�d�ln�T���, gL 
 L . �21�

A glance at Fig. 7, depicting ����T�−��0� / �d ln�T�� vs
1 / �d ln�T�� at Vg=−220, −240 and −300 V, reveals that the
systematic deviations from the characteristic weak localiza-
tion temperature dependence are fully consistent with a stan-
dard finite-size effect. Accordingly, the saturation and up-
turns seen in Fig. 5 at low temperatures are attributable to a
finite-size effect, while in a homogeneous and infinite system
the data should collapse on the solid line in Fig. 5�a�. An
essential exception is Vg=−140 V. Here the interface ap-
proaches the metallic quantum critical point �see Fig. 5�,
metallic because the sheet conductivity remains finite, ap-
proaching ���T=0,Vgc�=��0�Vgc�=��s�2.52�10−4 �−1

�Eq. �19�� in the limit T→0.
Figure 7 also reveals that the limiting length, L
gL, de-

pends in the insulating phase on the gate voltage as well. The
resulting dependence, L�Vg�
gL�Vg�, is shown in Fig. 8. In
analogy to the limiting length associated with the BKT-
transition �Fig. 4� it decreases by approaching quantum criti-
cality at Vg�−140 V. As a reduction in L enhances devia-
tions from the asymptotic behavior this feature accounts for

FIG. 5. �Color online� �a� ��−��0 vs T for various gate volt-
ages Vg. The solid line is ��−��0=d ln�T���−1� with d�1.23
�10−5 �−1 and ��0�Vg� taken from Fig. 5�b�. The dot at the origin
marks the quantum critical point and the dashed line is Eq. �19�
indicating the low-temperature behavior of the sheet conductivity at
the quantum critical point. �b� ��0 vs Vg. The solid line is Eq. �18�
with Vgc=−140 V.

FIG. 6. �Color online� ���Vgc ,T� vs T and in the inset vs T2 at
Vgc=−140 V. The solid line, indicating consistency with T2 is Eq.
�19�, while the dashed line is ���Vgc ,T�=2.275�10−4+1.54
�10−5 T��−1�. The dash-dot one in the inset is again Eq. �19�.
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the saturation and upturns seen in Fig. 5�a�. Supposing that
the limiting length is set by the failure of cooling below the
temperature Tf then L is set by Lf =�loc�Tf�
d�ln�Tf�� and
with that independent of the gate voltage, in disagreement
with Fig. 8. Accordingly, in analogy to the BKT transition,
the limiting length appears to be attributable to a electrostatic
mediated change in the inhomogeneity landscape.

Direct experimental evidence for a limiting length
emerges from the work of Ilani et al.46 A single electron
transistor was used as a local electrostatic probe to study the
underlying spatial structure of the metal-insulator transition
in two dimensions. The measurements show that as the tran-
sition is approached from the metallic side, a new phase
emerges that consists of weakly coupled fragments of the
two-dimensional system. These fragments consist of local-
ized charge that coexists with the surrounding metallic
phase. As the density is lowered into the insulating phase, the
number of fragments increases on account of the disappear-
ing metallic phase. The measurements suggest that the metal-
insulator transition is a result of the microscopic restructur-
ing that occurs in the system. On the other hand, we have

seen that the limiting length associated with the resulting
inhomogeneities depends on the gate voltage �see Figs. 4 and
8�.

Further evidence for a weakly localized insulating phase
stems from the observed negative magnetoresistance.10 An
applied magnetic field leads to a new length given by the size
of the first Landau orbit, or magnetic length, LH
= ��0 / �2�H��1/2, which decreases with growing field
strength. Once its size becomes comparable to the dephasing
length LTh �distance between inelastic collisions�47 weak lo-
calization is suppressed. In D=2 the following formula for
the magnetoconductivity was obtained:48,49

�� = ��0 + c���1/2 + 1/x� + ln�x��, c =
��e2

�h
, �22�

where � denotes the digamma function, �� is a constant of
the order of unity,49 and

x =
8�LTh

2 H

�0
. �23�

In the limit x�1 it reduces to

�� = ��0 +
��e2

�h
�− 1.96 + ln�x�� , �24�

while in the limit x→0

�� − ��0 
 H2, �25�

holds. Here

d��

d ln�H�
=

��e2

�h
� ��1.24 � 10−5 �−1 �26�

applies. In Fig. 9 we compare the experimental data with the
theoretical predictions. The data agree reasonably well with
the characteristic weak localization behavior �Eq. �22��,
while the asymptotic ln�H� behavior �Eq. �24�� is not fully
attained. The resulting estimates for d�� /d ln�H� are close
to e2 / ��h��1.24�10−5 �−1 and consistent with the zero
field temperature dependence of the sheet conductivity,
���T�=��0+d ln�T�, with d=e2 / ��h� �see Fig. 5�a��. An
analogous treatment of the magnetoresistance data of a non-
superconducting sample of Brinkman et al.5 yields
8�LTh

2 /�0=2.862 T−1 and c=��e2 /�h=4.8�10−5 �−1, so
c adopts in “superconducting” and “nonsuperconducting”
samples substantially different values. In any case, our analy-
sis of the magnetoconductivity uncovers a weakly localized
insulating phase, consistent with the ln�T� temperature de-
pendence of the zero field counterpart at sufficiently high
temperatures, and non-Drude behavior in the normal state.

C. Quantum phase transition

Traditionally the interpretation of experimental data taken
close to the 2D-QP-transition was based on the quantum
scaling relation,14,15,50

R��T,
� = R�sG�x�, x = c
/T1/z�̄. �27�

G�x� is a scaling function of its argument and G�0�=1, so at
quantum criticality the system is metallic with sheet resis-

FIG. 7. �Color online� ����T�−��0� / �d ln�T�� vs 1 / �d�ln�T��� at
Vg=−220, −240 and −300 V with d=1.23�10−5 �−1. The lines
correspond to Eq. �21� providing a measure for L in terms of �gL�

L.

FIG. 8. �Color online� −gL
L vs Vg derived from finite-size
scaling plots as shown in Fig. 7 with Eq. �21�.
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tance R�s. The BKT line is then fixed by xc=c
 /Tc
1/z�̄,

whereby Tc vanishes as Tc

z�̄
�−z�T=0� �Eq. �14��. c is a
nonuniversal parameter and 
 the appropriate scaling argu-
ment, measuring the relative distance from criticality. This
scaling form follows by noting that the divergence of ��T
=0�

−�̄ is at finite-temperature cutoff by a length LT, which
is determined by the temperature: LT
T−1/z. Thus G�x� is a
finite-size scaling function because x
 �LT /��T=0��1/�̄



 /T1/z�̄. The data for R��T ,
� plotted vs 
 /T1/z�̄ should
then collapse onto two branches joining at R�s. The lower
branch stems from the superconducting and the upper one
from the insulating phase. To explore the consistency with
the critical BKT behavior we note that in the limit Tc→0 the
relation,

RKT�T,Vg�
R0�Vg�

= exp	−
bR�Vg�

�T − Tc�Vg��1/2
 = G	Vg − Vgc

T1/z�̄ 
 ,

�28�

should apply. Indeed, the BKT-scaling form of the resistance
applies for any T�Tc because the universal critical behavior
close to Tc is entirely classical.51 On the contrary Tc, bR, and
the critical amplitude R0 are nonuniversal quantities which
depend on the tuning parameter. Furthermore, they are renor-
malized by quantum fluctuations. In any case, the data plot-
ted as RKT�T ,Vg� /R0�Vg� vs �Vg−Vgc� /T1/z�̄ should collapse
on a single curve and approach one close to quantum criti-
cality. In Fig. 10 we depicted this scaling plot, derived from
R0�Vg�, bR�Vg�, and Tc�Vg� for z�̄=2 /3. Apparently, the flow
to the quantum critical point is well confirmed. Furthermore,
noting that close to the QP-transition bR�Vg�
Tc

1/2, because
bR=4�Tc

1/2 /b �Eq. �3�� and b�const. �see Fig. 3�, the vortex
core energy scales as Ec
kBTc �Eq. �15��, the scaling func-

tion adopts with z�̄=2 /3 and Tc
 �Vg−Vgc�2/3 �Eq. �14�� the
form

G�x� � exp�− ãx1/3/�1 − b̃x2/3�1/2�, x =
Vg − Vgc

T3/2 , �29�

shown by the solid line in Fig. 10. Since Vg−Vgc
Tc
1/z�̄


Tc
3/2 and bR=4�Tc

1/2 /b is related to the vortex energy in
terms of b �Eq. �3��, the scaling function is controlled by the
BKT line and the vortex core energy, while the vortex core
radius enters the prefactor via R0�Vg�−R0c
�0

−2
�−2�T=0�

Tc

2 �Eq. �13��. Noting that ã=4�a1/2 /b and b̃=a, where a is
given in terms of Tc=a�Vg−Vgc�2/3�K� with a�8.9�10−3

�see Fig. 4� and b�50 �Fig. 3� we obtain ã�0.0237 and b̃
=a�0.0089, in reasonable agreement with the fit parameters
yielding the solid line in Fig. 10. This uncovers the consis-
tency and reliability of our estimates along the BKT line. In
this context it should be kept in mind that our analysis of the
insulating state is limited by the finite-size effect, preventing
to approach the zero-temperature regime.

On the contrary, in the insulating phase we observed that
the sheet conductivity scales according to Eqs. �17� and �18�
as

���T,Vg�
��s

= 1 −
5.9 � 10−6

��s
�Vg − Vgc�2/3 +

d

��s
ln�T� .

�30�

which is incompatible with the standard scaling form �Eq.
�27��. Indeed, it involves two independent lengths. �ld

1 / �ln�T��, the diverging length associated with
localization41 and ��T=0�
 ��Vg�−2/3, the zero-temperature
correlation length �Eq. �14��. In this context it should be kept
in mind that our analysis of the insulating state does not
extend to zero temperature because Eq. �30� applies at finite
temperatures only. As T is reduced further the question of
what happens in the insulating phase remains.

FIG. 9. �Color online� Magnetoconductivity �� vs H, applied
perpendicular to the interface, at T=0.03 K and Vg=−300 V and
−340 V. The solid line is ��=4.51�10−2+1.2�10−2 ln�H�k�−1,
the dashed one ��=2.6�10−2+1.1�10−2 ln�H�k�−1, the dotted
and dash-dot curves are Eq. �22� with the ��0, 8�LTH

2 /�0 and c
=��e2 / ��h� values 0.0284 k�−1, 2.906 T−1, 1.46�10−5 �−1 for
Vg=−340 V and 0.044 k�−1, 4.068 T−1, 1.46�10−5 �−1, at Vg

=−300 V. Note that 8�LTH
2 /�0=2.906 T−1 corresponds to LTH

�1.55�10−6 cm whereupon LH=LTH at H=1.37 T.

FIG. 10. �Color online� RKT�Vg ,T� /R0�Vg� vs �Vg−Vgc� /T3/2 for

various Vg’s. The solid line is Eq. �29� with ã=0.0248 and b̃
=0.0081 in K3/2 V−1.
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To complete the BKT- and 2D-QP-transition scenario
measurements of the magnetic penetration depth, 	�T�,
would be required. At the BKT-transition Tc and 	�T� are
related by

�s�Tc� =
d�0

2

16�3	2�Tc�
=

2

�
kBTc, �31�

while �s�T�=0 above Tc. �s is the 2D superfluid density and
d is the thickness of the superconducting sheet.52 The pres-
ence or absence of the resulting Nelson-Kosterlitz jump
would then allow to discriminate experimentally between
weak and strong disorder. In this context we note that there is
the Harris criterion,53 which states that short-range correlated
and uncorrelated disorder is irrelevant at the unperturbed
critical point, provided that 2−D��0, where D is the di-
mensionality of the system and � the critical exponent of the
finite-temperature correlation length. With D=2 and �=�,
appropriate for the BKT transition,21 any rounding of the
jump should then be attributable to the finite-size effect
stemming from the limiting length L. Furthermore, there is
the quantum counterpart of the Nelson-Kosterlitz relation,
stating that

d

	2�T = 0�
=

16�3kBTcQ2

�0
2 , �32�

close to the 2D-QP transition.12,13,32 Q2 is a dimensionless
critical amplitude bounded by54

2

�
� Q2 � 1.11. �33�

The lower bound corresponds to the BKT line, d /	2�T=0�
�1.03Tc with d, 	 in cm and Tc in K. Below this line the
superfluid order would become unstable to unbinding of vor-
tices. The upper bound, corresponds to d /	2�T=0��1.61Tc
and the transition at T=0 belongs to the BKT-universality
class and consequently at Tc the superfluid density exhibits
the universal discontinuity. Given our evidence for a �2
+1�-xy QP transition, quantum fluctuations are present and
expected to reduce Q2 from its maximum value, while the
finite-temperature transition remains again in the BKT-
universality class.54 Correspondingly, measurements of the
temperature and gate voltage dependence of the superfluid
density would be desirable to explore the observed BKT be-
havior, weak localization and Fermi liquid features further.

III. SUMMARY AND DISCUSSION

In summary, we have shown that the electrostatically
tuned phase-transition line at the LaAlO3 /SrTiO3 interface,
observed by Caviglia et al.,10 is consistent with a BKT-line
ending at a 2D-quantum critical point with critical exponents
z�1 and �̄�2 /3, so the universality class of the transition
appears to be that of the classical 3D-xy model. We have
shown that the rounding of the BKT-transition line and the
saturation of the sheet conductivity close to the QP transition
are remarkably consistent with a gate voltage dependent
finite-size effect. According to this, electrostatic tuning does
not change the carrier density only but the inhomogeneity
landscape as well. Taking the resulting finite-size effect into
account we provided consistent evidence for a weakly local-
ized insulator separated from the superconducting phase by a
metallic ground state at quantum criticality. Consistent with
the non-Drude behavior in the normal state, characteristics of
weak localization have been identified in both, the tempera-
ture and magnetic-field dependence of the conductivity. The
conductivity along the BKT-transition line was found to
agree with the standard scaling form of quantum critical phe-
nomena, while in the weakly localized insulating phase it
appears to fail in the accessible temperature regime. As in the
quantum scaling approach the scaling function is unknown
we obtained its form in the superconducting phase. It is con-
trolled by the BKT-phase transition line and the vortex en-
ergy. In addition we explored the Tc dependence of the vor-
tex core radius and the vortex energy. As the nature of the
metallic ground state at quantum criticality is concerned, the
limiting T2 dependence of the sheet conductivity points to
Fermi-liquid behavior, consistent with the evidence for weak
localization in the insulating phase and non-Drude behavior
in the normal state. In conclusion we have shown that the
appearance of metallicity at the interface between insulators,
a wonderful example of how subtle changes in the structure
of these systems can lead to fundamental changes in physical
properties, is a source of rich physics in two dimensions.
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